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The article examines the hydromagnetic laminar boundary layer flow and heat transfer in a power law
fluid over a stretching surface. The flow is influenced by linear stretching of the sheet. Also the energy
equation with temperature-dependent thermal conductivity, thermal radiation, work done by stress, vis-
cous dissipation and internal heat generation is considered. The governing partial differential equations
along with the boundary conditions are first cast into a dimensionless form and then the equations are
solved by Keller–Box method. The effects of various physical parameters on the flow and heat transfer
characteristics are presented graphically and discussed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction hibit non-Newtonian fluid behavior. It may also be pointed out
From a technological point of view, non-linear fluid rheology is
of special interest and has practical applications. Hence the study
of non-Newtonian fluid flow is important. Different models have
been proposed to explain the behavior of non-Newtonian fluids.
Among these, the power law, the differential type, and the rate
type models gained importance. Also boundary layer assumptions
were successfully applied to these models.

Flows due to a continuously moving surface are encountered in
several process of thermal and moisture treatment of materials,
predominantly in processes involving continuous pulling of a sheet
through a reaction zone; as in metallurgy, in textiles and paper
industries, and in the manufacture of glass sheets and crystalline
materials. Also many metallurgical processes involve the cooling
of continuous stripes or filaments by drawing them through a qui-
escent fluid, and in the process of drawing, these strips are
stretched. This type of flow was first initiated by Sakiadis [1] for
moving an inextensible sheet and later extended by Crane [2] to
fluid flow over a linearly stretched sheet.

Thereafter, numerous investigations were made on the stretch-
ing sheet problem with linear stretching in different directions [3–
8]. All the above studies restrict their analyses to Newtonian flows
in the absence of a magnetic field. In recent years, it has been ob-
served that a number of industrial fluids such as molten plastics,
artificial fibers, polymeric liquids, blood, food stuff, and slurries ex-
ll rights reserved.
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that, many industrial processes involve the cooling of continuous
strips or filaments by drawing them through a quiescent fluid. Dur-
ing this process, these strips are sometimes stretched. Mention
may be made of annealing and thinning of copper wires. In all
these cases, the properties of the final product depend to a great
extent on the rate of cooling. By drawing such strips in an electri-
cally conducting fluid subjected to a uniform magnetic field, the
rate of cooling can be controlled and the desired characteristics
of the final product can be obtained. Another important application
of hydromagnetic flows to metallurgy lies in the purification of
molten metals from non-metallic inclusion by the application of
magnetic field. In view of these applications, Sarpakaya [9] was
the first among others to study the magneto-hydrodynamic flow
of non-Newtonian fluids. This work was later extended by many
authors by considering the non-Newtonian visco-elastic flow, heat
and mass transfer under different physical situations [10–16]. It is
worth mentioning here that many inelastic non-Newtonian fluids
encountered in chemical engineering processes, are known to fol-
low the empirical Ostwald–de Waele or so called ‘‘power law mod-
el”. This model is described by a simple non-linear equation of
state for inelastic fluids which includes linear Newtonian fluids
as a special case.

The power law model provides an adequate representation of
many non-Newtonian fluids over the most important range of shear
stress. Although this model is merely an empirical relationship be-
tween the stress and velocity gradients, it has been successfully ap-
plied to non-Newtonian fluids experimentally. The two constants in
the model can be chosen with great ease for specific fluids and the
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Nomenclature

A, D constants
b stretching rate, a positive constant
B0 magnetic field
Cf skin friction
Cp specific heat at constant pressure
Dij strain tensor
Ec modified Eckert number
f dimensionless velocity
h(x) heat transfer coefficient
j
*

Joule effect
K consistency coefficient
K* mean absorption coefficient
l characteristic length
M hypergeometric (Kummer’s) function
Mn magnetic parameter
n power law index
Nux Nusselt number
Nr thermal radiation parameter
p pressure
Pr modified Prandtl number
Q internal heat generation/absorption
qw local heat flux at the sheet
qr radiative heat flux
R surface mass transfer
Rex local Reynolds number
T temperature distribution
Tij stress tensor
Tw temperature at the sheet

T1 temperature of the fluid at infinity
u velocity in the x-direction
U = bx velocity of the sheet
v velocity in the y-direction
x horizontal distance
y vertical distance

Greek symbols
a(T) thermal conductivity
a1 thermal conductivity at infinity
b heat source/sink parameter
c kinematic viscosity of the power law fluid
dij Kronecker delta
q density
l* consistency index of the power law fluid
w stream function
g similarity variable
e small parameter
h dimensionless temperature distribution
r electrical conductivity
r* Stephan–Boltzmann constant
DT = Tw � T1 sheet temperature
s shear stress

Subscripts
w, 1 conditions at the surface and in the free stream
g differentiation with respect to g
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model is found to be good in representing pseudo-plastic behavior.
It is frequently used in oil engineering. A considerable amount of
work has been done in this field by taking into account the heat
and mass transfer. Schowalter [17] has introduced the concept of
boundary layer theory of non-Newtonian fluids. Acrivos et al. [18]
have investigated the steady laminar flow of non-Newtonian fluids
over a plate. Lee and Ames [19] extended the above work to find the
similarity solutions for non-Newtonian power law fluid. Andersson
et al. [20] studied the boundary layer flow of an electrically conduct-
ing incompressible fluid obeying the power law model in the pres-
ence of transverse magnetic field. Howell et al. [21] examined the
momentum and heat transfer occurring in the laminar boundary
layer on a continuously moving and stretching surface in a non-
Newtonian power law fluid. Mahmoud and Mahmoud [22] investi-
gated the problem of a two-dimensional steady incompressible
power law non-Newtonian electrically conducting fluid past a con-
tinuously moving surface in the presence of a transverse magnetic
field. However all these studies are restricted to the analyses of
either flow characteristics or flow and heat transfer characteristics
over an impervious stretching boundary. We know that the charac-
teristic properties of the final product of the material depend to a
great extent on the rate of cooling through the adjacent boundary.
The rate of cooling associated with the heat transfer phenomena
may be controlled by suction/blowing through the porous boundary
in the presence of a constant transverse magnetic field. Hassanien
et al. [23] presented a work on flow and heat transfer in power
law fluid over a stretching porous surface with variable surface tem-
perature. Very recently, Abel and Mahesha [24] considered the ef-
fects of buoyancy and variable thermal conductivity in a power
law fluid past a vertical stretching sheet in the presence of non-uni-
form heat source.

All the above investigators restrict their analyses to MHD flow
and heat transfer over a stretching sheet. However the intricate flow
and heat transfer problem with the effects of internal heat genera-
tion/absorption, viscous dissipation, work done by stress, and the
thermal radiation is yet to be studied. This has applications to sev-
eral industrial problems (say engineering processes involving nucle-
ar power plants, gas turbines, and many others, see Vajravelu [25],
Vajravelu and Nayfeh [26]). In all these studies, the thermo-physical
properties of the ambient fluids were assumed to be constant. How-
ever it is well known that these properties may change with temper-
ature, especially the thermal conductivity. Available literature on
variable thermal conductivity [27–31] shows that this type of flow
has not been investigated for power law fluids in the presence of
suction/bowing and impermeability of the stretching sheet.

In view of these applications, we study the flow and heat trans-
fer phenomena in a power law fluid over a porous stretching sur-
face, in the presence of uniform transverse magnetic field, taking
into account the internal heat generation/absorption, viscous dissi-
pation, work done by stress, variable thermal conductivity, and
thermal radiation. This is a generalization of Andersson et al.’s
[20] work to the case of power law fluid flow and heat transfer
where the thermal conductivity is a function of temperature in
the presence of transverse magnetic field. Recently, flow of non-
Newtonian polymer solution was investigated by Savvas et al.
[32] and it was shown that computer simulation is a powerful
technique to predict the flow behavior. Because of the complexity
and non-linearity of our problem, the resulting equations are
solved numerically by the Keller–Box method. One of the impor-
tant observations of the study is that suction reduces the horizon-
tal velocity where as blowing increases the horizontal velocity for
all values of power law index.

2. Flow analysis

Consider a viscous, steady two-dimensional flow of an incom-
pressible, electrically conducting power law fluid in the presence
of a transverse magnetic field over a stretching sheet lying on the
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plane y > 0. The flow is confined to y > 0 (for details, see [20]). The
flow is generated by stretching the sheet from the origin with the
application of two equal and opposite forces in such a way that
the velocity of the sheet is linear. The thermo-physical properties
of the sheet and the fluid are assumed to be constant except for
the viscosity of the power law fluid which depends on the shear rate.
The flow is subject to a transverse uniform magnetic field of strength
~B0 ¼ ð0;B0;0Þ. Application of such a magnetic field stabilizes the
boundary layer flow. The magnetic Reynolds number is considered
to be small so that the induced magnetic field is negligible. We also
take the strength of the electric field due to polarization of the elec-
tric charges to be negligibly small. Under these assumptions, the
governing boundary layer equations of motion are

@u
@x
þ @v
@y
¼ 0; ð1Þ

u
@u
@x
þ v @v

@y
¼ 1

q
@Txy

@y
� rB2

0

q
u; ð2Þ

where u and v are the velocity components in the stream-wise and
the cross section directions, respectively; and q, r, and B0 are the
density, electric conductivity, and magnetic field, respectively. The
power law fluid represented by the rheological equation of state
is given by

Tij ¼ �pdij þ 2KðDklDklÞ
n�1

2 Dij; ð3Þ

where Ti j and Di j are, respectively, the stress and strain rate tensors,
K is the consistency coefficient, n is the power law index. The two
parameter rheological equation (3) is known as the Ostwald–de-
Waele model equation or more commonly called the power law
model. When n = 1, Eq. (3) represents a Newtonian fluid with dy-
namic coefficient of viscosity K. For n – 1, the constitutive equation
(3) represents the shear thinning (n < 1) and the shear thickening
(n > 1) fluids. Due to the boundary layer approximation, the essen-
tial off-diagonal stress component can be written as

Txy ¼ K
@u
@y

@u
@y

� �n�1
2 @u
@y
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@y

� �n

; ð4Þ

and this is the only stress component of dynamic significance. Now
the governing momentum equation (2) reduces to the following
form:

u
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� �n

� rB2
0

q
u: ð5Þ

However, unlike the second-order visco-elastic fluid, the inelastic
power law model (3) does not exhibit normal stress differences.
In the present situation, we have @u

@y � 0 throughout the boundary
layer since the stream-wise velocity component u decreases mono-
tonically with the distance y from the moving surface. The appropri-
ate boundary conditions for the present flow problem are

uðx;0Þ ¼ U; ð6aÞ
vðx;0Þ ¼ vw; ð6bÞ
u! 0 as y!1; ð6cÞ

where vw is the suction velocity across the stretching sheet when
vw < 0, and it is blowing velocity when vw > 0. To examine the flow
adjacent to the plate, the following transformations are used:

g ¼ y
x
ðRexÞ

1
nþ1; wðx; yÞ ¼ bx2ðRexÞ

�1
nþ1f ðgÞ; ð7Þ

where g is the similarity variable and w(x, y) is the stream function.
The velocity components u and v are given by

ðu;vÞ ¼ @w
@y

;� @w
@x

� �
: ð8Þ
The local Reynolds number is defined as

Rex ¼
U2�nxn

c
: ð9Þ

The conservation of mass equation (1) is therefore automatically
satisfied. The momentum equation (5) and the boundary conditions
(6) can be written as

nð�fggÞn�1fggg � f 2
g þ

2n
nþ 1

� �
ffgg �Mnfg ¼ 0; ð10Þ

fgð0Þ ¼ 1; ð11aÞ
f ð0Þ ¼ R; ð11bÞ
fgðgÞ ! 0 as g!1: ð11cÞ

Here the subscript g denotes differentiation with respect to g and
Mn ¼ rB2

0
qb is the magnetic parameter. It should be noted that the

velocity U = U(x) is used to define the dimensionless stream func-
tion f in Eq. (7). The local Reynolds number in Eq. (9) is the velocity
of the moving surface that drives the flow. This choice is in contrast
with the conventional boundary layer analysis in which the free
stream velocity is taken as the velocity scale. Although the transfor-
mation defined in (7) can be used for an arbitrary variation of U(x),
the transformation results in a true similarity problem only if U var-
ies as Cxm (m = 1). Here m is an arbitrary positive constant (not nec-
essarily an integer). In the conditions (11) the horizontal injection
or suction speed vw must be a function of the distance (m – 1) from
the leading edge. Consequently vw can be rewritten as

R ¼ �nþ 1
2n

ðRexÞ1=nþ1

U

 !
vw: ð12Þ

In order to have a similarity solution in g, it should be noted that vw

must be of the order of magnitude of uwðRexÞ�
1

nþ1; for n – 1. This is to
ensure that flow with suction or blowing at the surface satisfies the
boundary layer assumptions. Therefore, R is introduced to represent
the surface mass transfer which is positive for blowing, negative for
suction, and of order one. Eq. (12) shows that, the suction or blowing
parameter R is used to control the strength and direction of the nor-
mal flow at the boundary. Three boundary conditions in (11) are suf-
ficient for solving the third-order equation in (10). This contrasts
with boundary layer flow of a visco-elastic fluid, for which the result-
ing fourth-order equation requires an extra boundary condition for
solvability. This issue has been discussed in detail by Rajagopal
et al. [33]. The skin friction coefficient at the sheet is given by

Cf ¼
�2Txyð0Þ

qU2 ¼ 2ðRexÞ
�1

nþ1½�fggð0Þ�n: ð13Þ

To determine the temperature distribution and rate of heat transfer
in the above boundary layer, we now solve the energy equation re-
lated to the stretching sheet problem.

3. Heat transfer analysis

The energy equation for a fluid with variable thermal conduc-
tivity in the presence of internal heat generation/absorption, vis-
cous dissipation, work done by stress, and thermal radiation for
the above two-dimensional flow is

qcp u
@T
@x
þ v @T

@y

� �
¼ @

@y
aðTÞ @T

@y

� �
þ QðT � T1Þ þ l @u

@y

� �nþ1

þ rB2
0u2 � @qr

@y
; ð14Þ

subject to the appropriate boundary conditions. In the above equa-
tion, cp is the specific heat at constant pressure, T is the temperature
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Fig. 1. Horizontal velocity profiles fg(g) vs. g for different values of n with Mn = 0.0,
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of the fluid, T1 is the free stream temperature, and a(T) is the tem-
perature-dependent thermal conductivity. We consider the temper-
ature-dependent thermal conductivity in the following form (Chiam
[27]):

aðTÞ ¼ a1 1þ e
T � T1

DT

� �
; ð15Þ

where e is a small parameter, DT = Tw � T1, Tw is the given temper-
ature at the wall, and a1 is the thermal conductivity of the fluid far
away from the sheet. The term containing Q represents the temper-
ature-dependent heat source when Q > 0 and heat sink when Q < 0;
and it deals, respectively, with the situations of exothermic and
endothermic chemical reactions. The third and fourth terms on
the right-hand side of Eq. (14) represent, respectively, the viscous
dissipation and the ohmic heating effect. The last term qr on the
right-hand side of Eq. (14) represents the radiative heat flux which
is given by

qr ¼ �
4r�

3K�
@T4

@y
; ð16Þ

where r* and K* are, respectively, the Stephan–Boltzmann constant
and the mean absorption coefficient. We assume that the differ-
ences within the flow are such that T4 may be expressed as a linear
function of temperature. This is accomplished by expanding T4 in a
Taylor series about T1 and neglecting the higher order terms to ob-
tain T4 ffi 4T3

1T � 3T4
1. Using this expression of T4 in Eq. (16), we get
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16
3

r�

K�
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1
@T
@y

: ð17Þ

Substituting (15)–(17) in (14) we get
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þ rB2
0u2 þ QðT � T1Þ ð18Þ

From Eq. (18) it is observed that the effect of e and thermal radia-
tion is to enhance the thermal diffusivity.

The appropriate boundary conditions are

T ¼ Tw ¼ T1 þ A
x
l

� �2
at y ¼ 0;

T ! T1 as y!1;
ð19Þ

where A is a constant, which depends on the properties of the fluid
and l is a characteristic length. In practice, when computing numer-
ical solutions, the last condition is imposed at sufficiently large dis-
tance from the sheet. This distance depends on the physical
parameters and can be determined by carefully performed numer-
ical experiments. In terms of the dimensionless temperature,

h ¼ T � T1
Tw � T1

; where Tw � T1 ¼ A
x
l

� �2
: ð20Þ

The energy equation (18) reduces to the following non-linear ordin-
ary differential equation:

ðK0 þ ehÞhgg þ eh2
g þ Pr

2n
nþ 1

f hg � ð2f g � bÞh
� �

¼ �Pr Ec ðfggÞnþ1 þMnf 2
g

n o
; ð21Þ

subject to the boundary conditions

hðgÞ ¼ 1 at g ¼ 0; hðgÞ ! 0 as g!1: ð22Þ
Here again, the subscript g denotes the differentiation with respect
to g. The parameters Pr, b, Ec, and Nr are the modified Prandtl num-
ber, heat source/sink parameter, modified Eckert number and the
thermal radiation parameter, respectively, and are defined by

Pr ¼ qcpbx2

a1
ðRexÞ

�2
nþ1; b ¼ Q

qcpb
; Ec ¼ cl2bn

cpAx2 Rex;

Nr ¼ K�a1
4r�T3

1
; K0 ¼

3Nr
3Nr þ 4

: ð23Þ

The local Nusselt number is given by

Nux ¼
hðxÞ
a1

; ð24Þ

where the heat transfer coefficient h(x) has the form

hðxÞ ¼ qwðxÞ
Tw � T1

; ð25Þ

and the local heat flux at the sheet is

qw ¼ �a1
@T
@y

� �
y¼0
¼ �a1

U2�n

cx

 ! 1
nþ1

hgð0Þ: ð26Þ
4. Numerical procedure

The momentum and the energy equations for the non-Newto-
nian power law fluid over a stretching sheet in the presence of a
transverse magnetic field is presented in this paper. The effects
of the porous boundary, viscous dissipation, ohmic dissipation,
temperature-dependent thermal conductivity, heat source/sink,
and radiation are taken into consideration. The boundary layer par-
tial differential equations are transformed into a system of non-lin-
ear coupled ordinary differential equations. The transformed
equations (10) and (21), together with the boundary conditions
(11) and (22) are solved numerically using the Keller–Box method
(Prasad et al. [34]). The computed numerical values are plotted
graphically in Figs. 1–11 and presented in Tables 1 and 2. To assess
the accuracy of the computed results, the values of the skin friction
are compared with the values obtained by Andersson et al. [20],
for the case of impermeability of the stretching sheet (Vw = 0). It
is observed that our results are in good agreement with the results
of Andersson et al. [20] as seen from the tabulated results in
Vw = 0.0.
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Table 1. Numerical results for horizontal velocity and the temper-
ature are, respectively, shown in Figs. 1–11. Table 2 provides the
numerical results for the skin friction for different values of n,
Mn and Vw. Table 3 provides the numerical results for the wall tem-
perature gradient (Nusselt number) for different values of the
physical parameters.

5. Discussion of the results

Figs. 1–4 illustrate the effects of the power law index n, the
magnetic parameter Mn, the suction, and the impermeability
parameter on the horizontal velocity fg(g). It can be seen that the
horizontal velocity is monotonically tends to zero as the distance
increases from the boundary. The effect of the increasing values
of the power law index n is to reduce the horizontal boundary layer
thickness. That is, the thickness is much larger for shear thinning
(pseudo plastic; 0 < n < 1) fluids than that of shear thickening (dil-
atants; 1 < n < 2) fluids. This behavior is noticeable in Fig. 1. The ef-
fect of the impermeability of the boundary wall suction on the
horizontal velocity in the absence of magnetic parameter Mn is
shown in Fig. 2. It can be seen that the suction reduces the horizon-
tal boundary layer thickness whereas the blowing has the opposite
effect on the horizontal velocity boundary layer. These results are
consistent with the physical situation. In Fig. 3 the horizontal
velocity profiles are presented for the same set of physical param-
eters except for non-zero values of magnetic parameter Mn. Com-
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parison of these two figures reveals that the effect of magnetic
parameter (Mn) is to decrease the velocity for the cases of suction.
This is due to the fact that, the introduction of a transverse mag-
netic field, normal to the flow direction, has a tendency to create
the drag known as the Lorentz force which tends to resist the flow.
Hence the horizontal velocity profiles decrease as the magnetic
parameter Mn increases. This behavior is true in the cases of shear
thinning and shear thickening fluids. This behavior is very much in
evidence in the case of an impermeable boundary wall (see Fig. 4).

The effects of the power law index n, the magnetic parameter
Mn, the Prandtl number Pr, the Eckert number Ec, the thermal radi-
ation parameter Nr and the heat source parameter b on tempera-
ture are shown in Figs. 5–11 in the presence of suction. It is
observed from these figures that the temperature distribution
h(g) asymptotically tends to zero in the free stream region. The ef-
fect of the power law index n on the temperature distribution h(g)
in the boundary layer is shown in Fig. 5. Increasing the values of
the power law index leads to thinning of the thermal boundary
layer thickness. This behavior holds for shear thinning and shear
thickening fluids.

Fig. 6 depicts the effects of the suction parameter on the tem-
perature distribution. The thermal boundary layer becomes thicker
for suction and thinner for blowing. The effects of the magnetic
parameter Mn and the variable thermal conductivity parameter e
on the temperature distribution h(g) are depicted in Fig. 7. The ef-
fect of the magnetic parameter Mn is to increase the temperature
profile and it tends to zero as the distance increases from the
boundary. As explained above, the transverse magnetic field gives
rise to a resistive force known as the Lorentz force of an electrically
conducting fluid. This force makes the fluid experience a resistance
by increasing the friction between its layers and thus increases its
temperature. This behavior holds even in the presence of variable
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Fig. 11. Temperature profiles h(g) vs. g for different values of thermal radiation
parameter.

Table 1
Comparison of skin friction – f00(0) values with Andersson et al. [20].

n = 0.4 n = 0.6 n = 0.8 n = 1.0 n = 1.2 n = 1.5 n = 2.0

Andersson
et al. [20]

1.273 1.096 1.029 1.00 0.987 0.981 0.980

Present study 1.27968 1.09838 1.02897 1.00000 0.98738 0.98058 0.98035

Table 2
Values of skin friction – fgg(0) for different values of Mn and n.

N Mn Skin friction – fgg(0)

Vw = �0.235 Vw = 0.0 Vw = 0.235

0.4 0.0 1.44505417 1.29193401 1.16056228
0.5 2.01030493 1.8151418 1.64491689

0.8 0.0 1.15884542 1.03153598 0.91997683
0.5 1.44237614 1.30816805 1.18788457

1.0 0.0 1.12457597 1.00029111 0.889754415
0.5 1.34787822 1.22475886 1.11288595

1.2 0.0 1.10885763 0.987372041 0.877078414
0.5 1.29024136 1.17498946 1.06866932

1.6 0.0 1.09335208 0.979825199 0.871911228
0.5 1.22387087 1.12067473 1.02223969

2.0 0.0 1.08608031 0.980356693 0.874927878
0.5 – 1.09269071 1.00212872
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thermal conductivity parameter. This is due to the fact that the
presence of temperature-dependent thermal conductivity results
in a reduction in the magnitude of the transverse velocity by a
quantity @kðTÞ

@y , and this can be seen from energy equation. This
behavior holds for shear thinning and shear thickening fluids.
The effect of Prandtl number on the temperature distribution is
shown in Fig. 8. From the graphical representation we notice that
the effect of an increase in the Prandtl number is to decrease the
temperature distribution. This is due to the fact that thermal
boundary layer thickness decreases with the increase of Prandtl
number. From Figs. 7 and 8, we notice that the effect of negative
values of Vw (suction) is to decrease the temperature throughout
the flow field.

The graphs for the temperature distribution for different values
of the Eckert number are plotted in Fig. 9. From this figure we see
that the effect of increasing Eckert number is to increase the tem-
perature distribution h(g). This is in conformity with the fact that
energy is stored in the fluid region as a consequence of dissipation
due to viscosity and elastic deformation. In Fig. 10 the temperature
distribution for different values of the heat source parameter are
drawn. The direction of heat flow depends both on temperature
difference (Tw � T1) and the temperature gradient hg(0). To inter-
pret the heat transfer result physically, we discuss the result of po-
sitive b and the negative b separately. For positive b we have a heat
source in the boundary layer when Tw < T1 and a heat sink when
Tw < T1. Physically these correspond, respectively, recombination
and dissociation within the boundary layer. For the case of a cooled
wall (Tw < T1), there is heat transfer from the fluid to the wall even
without heat source. The presence of a heat source b > 0 will fur-
ther increase the heat flow to the wall. When b is negative, this
indicates a heat source for (Tw > T1) and a heat sink (Tw < T1). This
corresponds to combustion and an endothermic chemical reaction.
For the case of heated wall (Tw > T1), the presence of a heat source
creates a layer of hot fluid adjacent to the surface and therefore
heat at the wall decreases. For the cooled wall case (Tw < T1), the
presence of a heat sink blankets the surface with a layer of cool
fluid, and hence the heat flow at the surface decreases. This result
is similar to the result obtained by Acharya et al. [35].

The effect of thermal radiation on the temperature distribution
h(g) for shear thinning and shear thickening fluids is shown in
Fig. 11. The effect of increasing values of thermal radiation is to de-
crease the temperature distribution in the flow region. It is ob-
served that the increase in thermal radiation produces a
significant decrease in the thickness of the thermal boundary layer
of the fluid, and so the temperature profile decreases in the case of
shear thickening and shear thinning fluids. The values of skin fric-
tion and Nusselt number for various values of the non-dimensional
parameters are recorded in Tables 2 and 3, respectively. It is found
that the skin friction coefficient increases as the power law index
increases whereas it decreases as the magnetic parameter in-
creases. The effect of the Prandtl number is to reduce the wall tem-
perature gradient for the cases of suction and impermeability of
the sheet.



Table 3
Wall temperature gradient hg(0) for different values of the physical parameters.

n Nr Ec b e Mn = 0.0 Mn = 0.5

Vw = �0.235 Vw = 0.0 Vw = 0.235 Vw = �0.235 Vw = 0.0 Vw = 0.235

Pr = 1.0 Pr = 2.0 Pr = 1.0 Pr = 2.0 Pr = 1.0 Pr = 2.0 Pr = 1.0 Pr = 2.0 Pr = 1.0 Pr = 2.0 Pr = 1.0 Pr = 2.0

0.4 10,000 0 0 0 �1.2092 �1.7574 �1.2613 �1.8757 �1.316 �2.0028 �0.8491 �1.452 �0.8943 �1.5572 �0.945 �1.6741
0.1 �1.1604 �1.6957 �1.2116 �1.8133 �1.2657 �1.9402 �0.7613 �1.3623 �0.804 �1.4647 �0.8537 �1.58025
0.2 �1.1074 �1.6305 �1.1575 �1.7474 �1.2109 �1.8741 �0.6185 �1.2364 �0.663 �1.3421 �0.7179 �1.46075

0.05 0 �1.1695 �1.7012 �1.2184 �1.8129 �1.2698 �1.9328 �0.813 �1.3997 �0.8557 �1.4991 �0.9038 �1.60973
0.1 �1.122 �1.6412 �1.1701 �1.7523 �1.2208 �1.872 �0.7264 �1.312 �0.7669 �1.4088 �0.8141 �1.51817
0.2 �1.0704 �1.578 �1.1174 �1.6883 �1.1675 �1.8078 �0.5837 �1.1878 �0.6265 �1.2885 �0.6794 �1.40128

1 0 0 �0.9133 �1.499 �0.9193 �1.571 �0.9209 �1.6442 �0.347 �1.0033 �0.3254 �1.0396 �0.3008 �1.07876
0.1 �0.8599 �1.4331 �0.8646 �1.5038 �0.865 �1.5762 �0.2505 �0.9059 �0.2258 �0.9386 �0.1998 �0.97576
0.2 �0.8015 �1.3632 �0.8045 �1.4324 �0.8036 �1.5039 �0.094 �0.7698 �0.0708 �0.8053 �0.0502 �0.84516

0.05 0 �0.8747 �1.4442 �0.8779 �1.5103 �0.8766 �1.577 �0.3097 �0.9514 �0.286 �0.9826 �0.259 �1.01611
0.1 �0.8226 �1.3801 �0.8245 �1.4448 �0.822 �1.5107 �0.2138 �0.8555 �0.1872 �0.8833 �0.1591 �0.91506
0.2 �0.7655 �1.312 �0.7658 �1.3753 �0.762 �1.4403 �0.0558 �0.7203 �0.0314 �0.7517 �0.0093 �0.78652

1 0 0 0 �0.7431 �1.1096 �0.7587 �1.1523 �0.7747 �1.1971 �0.3236 �0.7374 �0.3417 �0.7748 �0.3622 �0.81702
0.1 �0.7039 �1.063 �0.7183 �1.1048 �0.7333 �1.1488 �0.2455 �0.6501 �0.2615 �0.6851 �0.2808 �0.72624
0.2 �0.6573 �1.0118 �0.67 �1.0524 �0.6835 �1.0956 �0.1343 �0.5091 �0.147 �0.5438 �0.1646 �0.58859

0.05 0 �0.732 �1.0935 �0.747 �1.135 �0.7625 �1.1786 �0.3136 �0.7228 �0.3314 �0.7594 �0.3516 �0.80064
0.1 �0.6932 �1.0474 �0.7071 �1.0881 �0.7215 �1.1309 �0.2358 �0.636 �0.2516 �0.6702 �0.2707 �0.71049
0.2 �0.6471 �0.9968 �0.6593 �1.0363 �0.6723 �1.0783 �0.1248 �0.4951 �0.1374 �0.5291 �0.1549 �0.57326

1 0 0 �0.4074 �0.8058 �0.3774 �0.8026 �0.341 �0.7944 0.2305 �0.2247 0.2771 �0.1957 0.32951 �0.1631
0.1 �0.3633 �0.7546 �0.3317 �0.75 �0.2939 �0.7405 0.3172 �0.1285 0.3663 �0.0965 0.4203 �0.06248
0.2 �0.3102 �0.6978 �0.2765 �0.6915 �0.2367 �0.6806 0.4405 0.0265 0.4936 0.05912 0.54972 0.08947

0.05 0 �0.3966 �0.7902 �0.3661 �0.786 �0.3292 �0.7766 0.242 �0.2094 0.2888 �0.1797 0.34148 �0.14631
0.1 �0.3528 �0.7395 �0.3208 �0.7339 �0.2825 �0.7233 0.3287 �0.1134 0.378 �0.0808 0.4322 �0.04603
0.2 �0.3002 �0.6832 �0.266 �0.6759 �0.2257 �0.664 0.4523 0.0422 0.5055 0.07527 0.56178 0.10612

1.0 10,000 0 0 �0.1 �1.2793 �1.8338 �1.3799 �2.0553 �1.4901 �2.3033 �0.9825 �1.5905 �1.0835 �1.804 �1.1992 �2.04998
0 �1.2347 �1.7785 �1.3343 �1.9998 �1.4442 �2.2485 �0.921 �1.5229 �1.0219 �1.7364 �1.139 �1.98395
0.05 �1.2111 �1.75 �1.3103 �1.9711 �1.4201 �2.2203 �0.8867 �1.4869 �0.9878 �1.7006 �1.1061 �1.94933

0.05 �0.1 �1.2379 �1.777 �1.3328 �1.9865 �1.4366 �2.2212 �0.9438 �1.5364 �1.0396 �1.7389 �1.1496 �1.97217
0 �1.1945 �1.7233 �1.2884 �1.9326 �1.3919 �2.1679 �0.8835 �1.4705 �0.9793 �1.673 �1.0906 �1.90787
0.05 �1.1716 �1.6956 �1.265 �1.9048 �1.3684 �2.1405 �0.8497 �1.4354 �0.9458 �1.6381 �1.0583 �1.87414

1 0 �0.1 �1.0101 �1.613 �1.0501 �1.7748 �1.0906 �1.9529 �0.6101 �1.2782 �0.6452 �1.4245 �0.6883 �1.59538
0 �0.96 �1.5531 �0.998 �1.7136 �1.0374 �1.8914 �0.5408 �1.2041 �0.5749 �1.3493 �0.6187 �1.52093
0.05 �0.9334 �1.5221 �0.9704 �1.6819 �1.0091 �1.8596 �0.502 �1.1646 �0.5359 �1.3094 �0.5805 �1.48173

0.05 �0.1 �0.9703 �1.5578 �1.0052 �1.7089 �1.0403 �1.8751 �0.5708 �1.2248 �0.6016 �1.3614 �0.6397 �1.52111

1.6 10,000 1 0 �0.9212 �1.4995 �0.9543 �1.6493 �0.9881 �1.8152 �0.5024 �1.1522 �0.5322 �1.2878 �0.5711 �1.4483
0.05 �0.8952 �1.4692 �0.9272 �1.6184 �0.9605 �1.7841 �0.4638 �1.1134 �0.4935 �1.2486 �0.5333 �1.40993

1 0 0 �0.1 �0.7894 �1.1758 �0.8207 �1.259 �0.8546 �1.3498 �0.4379 �0.8676 �0.4808 �0.9531 �0.5297 �1.05125
0 �0.7532 �1.1329 �0.7828 �1.2149 �0.8154 �1.3052 �0.3848 �0.8071 �0.427 �0.8924 �0.4761 �0.9917
0.05 �0.7336 �1.1101 �0.7622 �1.1915 �0.7941 �1.2815 �0.355 �0.7731 �0.3968 �0.8585 �0.4461 �0.95884

0.05 �0.1 �0.7776 �1.159 �0.8079 �1.24 �0.8408 �1.3284 �0.427 �0.8519 �0.4691 �0.9355 �0.5171 �1.0315
0 �0.7418 �1.1165 �0.7705 �1.1964 �0.802 �1.2843 �0.3743 �0.7919 �0.4157 �0.8753 �0.4639 �0.97248
0.05 �0.7224 �1.094 �0.7501 �1.1733 �0.7809 �1.2609 �0.3446 �0.7581 �0.3857 �0.8417 �0.4341 �0.93988

1 0 �0.1 �0.4659 �0.8962 �0.4362 �0.9186 �0.401 �0.9397 �0.0024 �0.4826 0.0188 �0.5026 0.04017 �0.52849
0 �0.4236 �0.8475 �0.3914 �0.8678 �0.3541 �0.8876 0.0587 �0.4141 0.0813 �0.433 0.10308 �0.45942
0.05 �0.4006 �0.8216 �0.3669 �0.8407 �0.3284 �0.8597 0.0931 �0.3754 0.1165 �0.3939 0.13848 �0.42112

0.05 �0.1 �0.4545 �0.88 �0.4239 �0.9005 �0.3878 �0.9197 0.0097 �0.4666 0.0315 �0.485 0.05371 �0.50901
0 �0.4125 �0.8318 �0.3795 �0.8502 �0.3412 �0.868 0.0706 �0.3984 0.0939 �0.4157 0.11645 �0.4403
0.05 �0.3897 �0.806 �0.3551 �0.8233 �0.3157 �0.8403 0.105 �0.3597 0.1291 �0.3767 0.15178 �0.40215

10,000 0 0 �0.1 �1.2849 �1.8196 �1.4131 �2.0973 �1.5772 �2.4183 �1.0697 �1.615 �1.2005 �1.8875 �1.3483 �2.20535
0 �1.2442 �1.765 �1.3717 �2.0428 �1.5387 �2.366 �1.0274 �1.5557 �1.1578 �1.8282 �1.3057 �2.14756
0.05 �1.2233 �1.737 �1.3504 �2.0148 �1.519 �2.3392 �1.0057 �1.5251 �1.1359 �1.7976 �1.2839 �2.11786

0.05 �0.1 �1.244 �1.7639 �1.3649 �2.0269 �1.5209 �2.3309 �1.0311 �1.5615 �1.155 �1.82 �1.295 �2.1215
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